|
|
import time import xml.etree.ElementTree as ET import urllib.request as request import zipfile import os
import pandas as pd
import settings import utils from utils import time_convert
base_dir_bgh = 'raw_data/BGH_Data' extended_dir_bgh = base_dir_bgh + '/senates' dataframe_dir_bgh = 'dataframes/bgh/' pickle_name_bgh = 'bgh_data.pkl' simple_attributes = ["doknr", "ecli", "gertyp", "gerort", "spruchkoerper", "entsch-datum", "aktenzeichen", "doktyp", "norm", "vorinstanz", "mitwirkung", "titelzeile", "leitsatz", "sonstosatz", "tenor", "tatbestand", "entscheidungsgruende", "gruende", "abwmeinung", "sonstlt", "identifier", "coverage", "language", "publisher", "accessRights"] nested_attributes = ["region_abk", "region_long"] text_attributes = ["titelzeile", "leitsatz", "sonstosatz", "tenor", "tatbestand", "entscheidungsgruende", "gruende", "abwmeinung", "sonstlt"] stopword_extension = '_no_stopwords' current_path = 'data'
def get_file_list(): """
Makes http request for the files :return: the web page with all current cases as an xml-tree """
xml_file, https_message = request.urlretrieve('https://www.rechtsprechung-im-internet.de/rii-toc.xml') tree = ET.parse(xml_file) root = tree.getroot() return root
def count_cases(root, tag): """
counts all cases belonging to the given tag and returns the count :param root: downloaded xml-tree with all files :param tag: tag to find in the name :return: number of cases belonging to the BGH """
count = 0 for child in root: if tag in child[0].text: count += 1 return count
def download(base_dir, extended_dir, tag): """
download all cases to a folder related to their senats :param base_dir: Name of the directory for the data :param extended_dir: name of the subdirectory for saving :param tag: tag to recognize the court (BGH, BVerwG) """
# set up directories utils.create_dir(current_path=current_path, directory_name=base_dir) utils.create_dir(current_path=current_path, directory_name=extended_dir) # do the download root = get_file_list() # 0 ist gericht, 3 ist link max_cases = count_cases(root, tag) downloaded = 0 for child in root: while True: try: if tag in child[0].text: filename, http = request.urlretrieve(child[3].text) with zipfile.ZipFile(filename, 'r') as zip_ref: zip_ref.extractall( utils.server_path(current_path=current_path, path=extended_dir + '/' + child[0].text.replace('\n', '') + '/')) os.remove(filename) downloaded += 1 print("\rDownloaded %d of %d " % (downloaded, max_cases) + tag + "Cases", end="") finally: break print("\nDone!")
def read_file_data(file): """
Reads the data of one case / file.
:param file: package containing (filename, directory, directory extension) to address the file :return: a dictionary with key: attribute_name and value: attribute_value """
filename, directory, extended_dir = file tree = ET.parse(utils.server_path(current_path=current_path, path=os.path.join(extended_dir, directory, filename))) root = tree.getroot() res = {} for attribute in simple_attributes: attr = root.find(attribute) # leitsatz überprüfen: zwei Worte zusammen, aber leerzeichen immer noch da! text = '' for t in attr.itertext(): if t == '.' or t == ',' or t == ';' or t == '!' or t == '?': text = text.strip() # remove space before these characters text += t + ' ' text = text.strip() if text == '': res[attribute] = None else: res[attribute] = text
for attribute in nested_attributes: nesting = attribute.split('_') xml_tag = root # find nested attribute for i in range(len(nesting)): xml_tag = xml_tag.find(nesting[i]) text = "" for t in xml_tag.itertext(): if t == '.' or t == ',' or t == ';' or t == '!' or t == '?': text = text.strip() # remove space before these characters text += t + ' ' text = text.strip() if text == '': res[attribute] = None else: res[attribute] = text
for attribute in utils.rii_text_columns: if res[attribute] is not None: if settings.remove_brackets: res[attribute] = utils.remove_brackets(res[attribute]) res[attribute] = utils.remove_spaces_before_sentence_marks(res[attribute])
return pd.DataFrame(res, index=[0])
def create_pickle(extended_dir, pickle_name, steps): """
Combines all downloaded files of the given extended directory into one pickle
:param extended_dir: extended dir to find the files :param pickle_name: name of the pickle to save :param steps: how many cases should be worked on now """
utils.create_dir(current_path=current_path, directory_name=dataframe_dir_bgh, delete=False) start_time = time.time() extension = '' if settings.remove_brackets: extension = settings.no_brackets_suffix
files = [(filename, directory, extended_dir) for directory in utils.list_dir_files(current_path=current_path, path=extended_dir) for filename in utils.list_dir_files(current_path=current_path, path=os.path.join(extended_dir, directory)) if filename.endswith(".xml")]
original_length = len(files) data = pd.DataFrame(columns=simple_attributes + nested_attributes)
pickle_path = dataframe_dir_bgh+extension+pickle_name
files, data = utils.get_step_subset_raw(steps=steps, path_to_dest_dataframe=pickle_path, source_data=files, dest_data=data, call_path=current_path)
result = utils.parallel_imap(read_file_data, files) for row in result: data = pd.concat([data, row], ignore_index=True) with utils.open_file(current_path=current_path, path=pickle_path, modes='wb') as f: data.to_pickle(f)
print('Resulting dataframes have length ' + str(data.shape[0]) + ' (' + str(data.shape[0] / original_length * 100) + '%)') end_time = time.time() time_lapsed = end_time - start_time time_convert(time_lapsed)
def get_selected_bgh_data(directory='.\\'): """
Shortcut for getting the BGH data currently needed. Selects all data from the Civil copurts which contain 'Urteile'
:param directory: directory offset from current position, with ending slashes :return: the data """
return get_data(pickle_name_bgh, directory, spruchkoerper='Zivilsenat', doktyp='Urteil')
def get_data(pickle_name, directory='../data/', spruchkoerper=None, doktyp=None): """
Method for access to the bgh pickle :param pickle_name: name to identify the data :param directory: directory path to the data file (with ending slash) :param spruchkoerper: Parameter can be used to select the senates (checks whether the given string is contained in the datas spruchkoerper) :param doktyp: can be used to select specific documents (like 'Urteil', 'Beschluss', etc.), must contain the word :return: The data as a pandas dataframe """
extension = '' if settings.remove_brackets: extension = settings.no_brackets_suffix data = utils.df_from_pickle(current_path=current_path, path=directory + dataframe_dir_bgh + extension + pickle_name) if spruchkoerper is not None: data = data[data['spruchkoerper'].notnull()] data = data[data['spruchkoerper'].str.contains(spruchkoerper)] if doktyp is not None: data = data[data['doktyp'].str.lower().str.contains(doktyp.lower())] data = data.dropna(axis=1, how='all') # drop all columns with no value data = data.drop_duplicates() return data
# if __name__ == "__main__": # download(base_dir=base_dir_bgh, extended_dir=extended_dir_bgh, tag='BGH') # create_pickle(extended_dir=extended_dir_bgh, pickle_name=pickle_name_bgh, steps=2)
|