Browse Source

Added a main for the model training and evaluation. The code from the jupyter notebook has been split up into functions in pipeline.py. User input has been removed and instead replaced with function arguments, to change at the start of main.py.

master
Robert Rabbe 2 weeks ago
parent
commit
85022f9fcc
  1. 62
      main.py
  2. 217
      pipeline.py

62
main.py

@ -0,0 +1,62 @@
from pipeline import (
load_dataset,
filter_data,
filter_test_data,
prepare_user_data,
train_models,
evaluate_models,
display_warning_about_2020_data,
display_warnings_for_scenarios
)
# === Configurable Parameters ===
DATA_PATH = './Datasets/ALLUSERS32_15MIN_WITHOUTTHREHOLD.xlsx'
OUTPUT_EXCEL_PATH = './working/evaluation_results.xlsx'
SEQUENCE_LENGTHS = [20] # You can add more: [20, 25, 30]
TRAINING_SCENARIO = [(2018, list(range(1, 13))), (2019, list(range(1, 10)))]
VALIDATION_SCENARIO = [(2019, [10, 11, 12])]
TEST_SCENARIO = [(2020, [1, 2])] # Jan–Feb 2020 only
# === Optional display only ===
predefined_training_scenarios = {
"Scenario 1": {"years_months": [(2018, list(range(1, 13))), (2019, list(range(1, 10)))]},
"Scenario 2": {"years_months": [(2017, list(range(1, 13))), (2018, list(range(1, 13))), (2019, list(range(1, 10)))]}
}
predefined_validation_scenarios = {
"Scenario A": {"years_months": [(2019, [10, 11, 12])]}
}
def main():
print("=== Training Scenario Setup ===")
display_warning_about_2020_data()
display_warnings_for_scenarios("training", predefined_training_scenarios, predefined_validation_scenarios)
print("\n=== Validation Scenario Setup ===")
display_warning_about_2020_data()
display_warnings_for_scenarios("validation", predefined_training_scenarios, predefined_validation_scenarios)
# === Load and preprocess ===
df = load_dataset(DATA_PATH)
ALLUSERS32_15MIN_WITHOUTTHREHOLD = False
if('ALLUSERS32_15MIN_WITHOUTTHREHOLD.xlsx' in DATA_PATH):
ALLUSERS32_15MIN_WITHOUTTHREHOLD = True
training_data = filter_data(df, TRAINING_SCENARIO, ALLUSERS32_15MIN_WITHOUTTHREHOLD)
validation_data = filter_data(df, VALIDATION_SCENARIO, ALLUSERS32_15MIN_WITHOUTTHREHOLD)
user_data_train = prepare_user_data(training_data)
user_data_val = prepare_user_data(validation_data)
# === Train models ===
best_models = train_models(user_data_train, user_data_val, sequence_lengths=SEQUENCE_LENGTHS)
# === Load and evaluate test ===
test_df = filter_test_data(df, TEST_SCENARIO)
evaluate_models(best_models, test_df, SEQUENCE_LENGTHS, OUTPUT_EXCEL_PATH, ALLUSERS32_15MIN_WITHOUTTHREHOLD)
print(f"\n✅ All evaluations completed. Results saved to: {OUTPUT_EXCEL_PATH}")
if __name__ == "__main__":
main()

217
pipeline.py

@ -0,0 +1,217 @@
import numpy as np
import pandas as pd
import shutil
import os
from pandas import ExcelWriter
import keras_tuner as kt
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense, Dropout, Bidirectional
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import ReduceLROnPlateau, EarlyStopping
from keras_tuner import RandomSearch
from sklearn.metrics import accuracy_score
# === Display functions ===
def display_warning_about_2020_data():
print("\n⚠️ Warning: 2020 data after February is excluded due to COVID-19.")
print("✅ Only Jan and Feb 2020 are used for testing. Do not use them in training/validation.")
def display_warnings_for_scenarios(scenario_type, predefined_training_scenarios, predefined_validation_scenarios):
if scenario_type == "training":
print("\n⚠️ Predefined Training Scenarios (for reference only):")
for name, scenario in predefined_training_scenarios.items():
parts = [f"{year}-{months}" for year, months in scenario['years_months']]
print(f" {name}: {', '.join(parts)}")
elif scenario_type == "validation":
print("\n⚠️ Predefined Validation Scenario:")
for name, scenario in predefined_validation_scenarios.items():
parts = [f"{year}-{months}" for year, months in scenario['years_months']]
print(f" {name}: {', '.join(parts)}")
# === Data functions ===
def load_dataset(file_path):
return pd.read_excel(file_path)
def filter_data(df, scenario, ALLUSERS32_15MIN_WITHOUTREHOLD):
filtered = pd.DataFrame()
for year, months in scenario:
filtered = pd.concat([filtered, df[(df['Year'] == year) & (df['Month'].isin(months))]])
if ALLUSERS32_15MIN_WITHOUTREHOLD:
return filtered.drop(columns=['Month', 'Year', 'date', 'DayOfWeek'])
else:
return filtered.drop(columns=['Month', 'Year', 'date'])
def filter_test_data(df, scenario):
data_parts = []
for year, months in scenario:
part = df[(df['Year'] == year) & (df['Month'].isin(months))]
data_parts.append(part)
return pd.concat(data_parts, ignore_index=True)
def prepare_user_data(df):
df_sorted = df.sort_values(by='user').reset_index(drop=True)
users = df_sorted['user'].unique()
return {user: df_sorted[df_sorted['user'] == user] for user in users}
# === Training & Validation ===
def train_models(user_data, user_data_val, sequence_lengths=[20], tuner_dir="./working/tuner"):
best_models = {}
early_stopping = EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True)
lr_scheduler = ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=5, verbose=1)
users = list(user_data.keys())
shutil.rmtree(tuner_dir, ignore_errors=True)
for sequence_length in sequence_lengths:
print(f"\n=== Training for Sequence Length: {sequence_length} ===")
X, y = [], []
for user, data in user_data.items():
features = data.drop('user', axis=1).values
labels = data['user'].values
for i in range(len(features) - sequence_length):
X.append(features[i:i + sequence_length])
y.append(labels[i + sequence_length])
X = np.array(X)
y = np.array(y)
X_val, y_val = [], []
for user, data in user_data_val.items():
features = data.drop('user', axis=1).values
labels = data['user'].values
for i in range(len(features) - sequence_length):
X_val.append(features[i:i + sequence_length])
y_val.append(labels[i + sequence_length])
X_val = np.array(X_val)
y_val = np.array(y_val)
if X.shape[0] == 0 or X_val.shape[0] == 0:
print(f"⚠️ Skipped sequence length {sequence_length} due to insufficient data.")
continue
n_features = X.shape[2]
def build_model(hp):
model = Sequential()
model.add(Bidirectional(LSTM(units=hp.Int('units', 32, 256, step=2),
input_shape=(sequence_length, n_features))))
model.add(Dropout(hp.Float('dropout_rate', 0.1, 0.5, step=0.1)))
model.add(Dense(len(users), activation='softmax'))
model.compile(
optimizer=Adam(learning_rate=hp.Choice('learning_rate', [1e-2, 1e-3, 1e-4])),
loss='sparse_categorical_crossentropy',
metrics=['accuracy']
)
return model
tuner = RandomSearch(
build_model,
objective='val_loss',
max_trials=30,
executions_per_trial=2,
directory=tuner_dir,
project_name=f'lstm_seq_{sequence_length}'
)
tuner.search(X, y, epochs=30, validation_data=(X_val, y_val),
callbacks=[early_stopping, lr_scheduler], verbose=1)
best_hps = tuner.get_best_hyperparameters(1)[0]
best_model = tuner.hypermodel.build(best_hps)
best_model.fit(X, y, epochs=30, validation_data=(X_val, y_val),
callbacks=[early_stopping, lr_scheduler], verbose=0)
best_models[sequence_length] = {
'model': best_model,
'best_hyperparameters': {
'units': best_hps.get('units'),
'dropout_rate': best_hps.get('dropout_rate'),
'learning_rate': best_hps.get('learning_rate')
}
}
return best_models
# === Evaluation ===
def evaluate_models(best_models, df_test, sequence_lengths, output_excel_path, ALLUSERS32_15MIN_WITHOUTTHREHOLD):
print("\n🧪 Evaluating on Test Data...")
with ExcelWriter(output_excel_path) as writer:
for sequence_length in sequence_lengths:
if sequence_length not in best_models:
continue
evaluate_model_on_test_data(best_models[sequence_length]['model'], df_test.copy(),
sequence_length, writer, ALLUSERS32_15MIN_WITHOUTTHREHOLD)
def evaluate_model_on_test_data(model, test_df, sequence_length, excel_writer, ALLUSERS32_15MIN_WITHOUTTHREHOLD):
if(ALLUSERS32_15MIN_WITHOUTTHREHOLD):
test_df = test_df.drop(columns=['Month', 'Year', 'date', 'DayOfWeek'])
else:
test_df = test_df.drop(columns=['Month', 'Year', 'date'])
test_df = test_df.sort_values(by='user').reset_index(drop=True)
users = test_df['user'].unique()
results = []
accuracy_above_50 = 0
for user in users:
user_df = test_df[test_df['user'] == user]
X, y_true = [], []
user_features = user_df.drop(columns=['user']).values
user_labels = user_df['user'].values
if len(user_df) <= sequence_length:
print(f"Skipping User {user} (not enough data for sequence length {sequence_length})")
continue
for i in range(len(user_df) - sequence_length):
seq_x = user_features[i:i + sequence_length]
seq_y = user_labels[i + sequence_length]
X.append(seq_x)
y_true.append(seq_y)
X = np.array(X)
y_true = np.array(y_true)
if len(X) == 0:
continue
y_pred = model.predict(X, verbose=0)
y_pred_classes = np.argmax(y_pred, axis=1)
unique_pred, counts_pred = np.unique(y_pred_classes, return_counts=True)
label_counts_pred = dict(zip(unique_pred, counts_pred))
unique_true, counts_true = np.unique(y_true, return_counts=True)
label_counts_true = dict(zip(unique_true, counts_true))
acc = accuracy_score(y_true, y_pred_classes)
if acc > 0.5:
accuracy_above_50 += 1
results.append({
'User': user,
'Accuracy (%)': acc * 100,
'Predicted Class Distribution': str(label_counts_pred),
'Actual Class Distribution': str(label_counts_true)
})
print(f"\n=== User {user} ===")
print(f"✅ Accuracy: {acc * 100:.2f}%")
print("📊 Predicted Class Distribution:", label_counts_pred)
print("📌 Actual Class Distribution: ", label_counts_true)
final_accuracy_percent = (accuracy_above_50 / 32) * 100
print(f"\n🟩 Final Evaluation Summary for Sequence Length {sequence_length}:")
print(f"Users with >50% Accuracy: {accuracy_above_50} / 32")
print(f"✅ Final Success Rate: {final_accuracy_percent:.2f}%")
results.append({
'User': 'TOTAL',
'Accuracy (%)': '',
'Predicted Class Distribution': f'Users >50% Acc: {accuracy_above_50}/32',
'Actual Class Distribution': f'Success Rate: {final_accuracy_percent:.2f}%'
})
df_results = pd.DataFrame(results)
df_results.to_excel(excel_writer, sheet_name=f"SeqLen_{sequence_length}", index=False)
Loading…
Cancel
Save