import json import os import numpy as np import pandas as pd import sklearn from pipeline import ( load_dataset, filter_data, filter_test_data, prepare_user_data, train_models, evaluate_models, display_warning_about_2020_data, display_warnings_for_scenarios, prepare_data_for_model ) year_str = 'Year' month_str = 'Month' user_str = 'user' split_str = 'split type' threshold_str = 'threshold used' timespan_str = 'time used' sequence_length_str = 'sequence length' precision_str = 'precision' recall_str = 'recall' f1_string = 'f1 score' weak_column_names = ['DayOfWeek_'+day for day in ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday' ]] # === Configurable Parameters === dataset_path = './Datasets/' DATA_PATH = dataset_path +'ALLUSERS32_15MIN_WITHOUTTHREHOLD.xlsx' OUTPUT_EXCEL_PATH = './working/evaluation_results.xlsx' result_filename = './working/evaluation_results.json' SEQUENCE_LENGTHS = [20, 15, 10, 5, 1] # You can add more: [20, 25, 30] TRAINING_SCENARIO = [(2018, list(range(1, 13))), (2019, list(range(1, 10)))] VALIDATION_SCENARIO = [(2019, [10, 11, 12])] TEST_SCENARIO = [(2020, [1, 2])] # Jan–Feb 2020 only # === Optional display only === predefined_training_scenarios = { "Scenario 1": {"years_months": [(2018, list(range(1, 13))), (2019, list(range(1, 10)))]}, "Scenario 2": {"years_months": [(2017, list(range(1, 13))), (2018, list(range(1, 13))), (2019, list(range(1, 10)))]} } predefined_validation_scenarios = { "Scenario A": {"years_months": [(2019, [10, 11, 12])]} } def remove_covid_data(df): df = df[~((df[year_str]==2020) & (df[month_str]>2))] return df def split_data_by_month_percentage(df, percentages): train_p, valid_p, test_p = percentages ids = df[[year_str, month_str]].drop_duplicates().sort_values([year_str, month_str]) tr, va, te = np.split(ids, [int((train_p/100) * len(ids)), int(((train_p + valid_p)/100) * len(ids))]) return df.merge(tr, on=[year_str, month_str], how='inner'), df.merge(va, on=[year_str, month_str], how='inner'), df.merge(te, on=[year_str, month_str], how='inner') def split_data_by_userdata_percentage(df, percentages): train_p, valid_p, test_p = percentages tr, va, te = pd.DataFrame(), pd.DataFrame(), pd.DataFrame() for user_id in df[user_str].unique(): user_data = df[df[user_str]==user_id].sort_values([year_str, month_str]) u_tr, u_va, u_te = np.split(user_data, [int((train_p/100)*len(user_data)), int(((train_p+valid_p)/100)*len(user_data))]) tr = pd.concat([tr, u_tr], ignore_index=True) va = pd.concat([va, u_va], ignore_index=True) te = pd.concat([te, u_te], ignore_index=True) return tr, va, te def main(): # print("=== Training Scenario Setup ===") # display_warning_about_2020_data() # display_warnings_for_scenarios("training", predefined_training_scenarios, predefined_validation_scenarios) # print("\n=== Validation Scenario Setup ===") # display_warning_about_2020_data() # display_warnings_for_scenarios("validation", predefined_training_scenarios, predefined_validation_scenarios) # === Load and preprocess === df = load_dataset(DATA_PATH) ALLUSERS32_15MIN_WITHOUTTHREHOLD = False if('ALLUSERS32_15MIN_WITHOUTTHREHOLD.xlsx' in DATA_PATH): ALLUSERS32_15MIN_WITHOUTTHREHOLD = True training_data = filter_data(df, TRAINING_SCENARIO, ALLUSERS32_15MIN_WITHOUTTHREHOLD) validation_data = filter_data(df, VALIDATION_SCENARIO, ALLUSERS32_15MIN_WITHOUTTHREHOLD) user_data_train = prepare_user_data(training_data) user_data_val = prepare_user_data(validation_data) # === Train models === best_models = train_models(user_data_train, user_data_val, sequence_lengths=SEQUENCE_LENGTHS) # === Load and evaluate test === test_df = filter_test_data(df, TEST_SCENARIO) evaluate_models(best_models, test_df, SEQUENCE_LENGTHS, OUTPUT_EXCEL_PATH, ALLUSERS32_15MIN_WITHOUTTHREHOLD) print(f"\n✅ All evaluations completed. Results saved to: {OUTPUT_EXCEL_PATH}") def reduce_columns(df, filename): if '15MIN' in filename: return df.drop(columns=['Month', 'Year', 'date']+weak_column_names) else: return df.drop(columns=['Month', 'Year', 'date']) def main_two(): results = pd.DataFrame() if os.path.exists(result_filename): results = pd.DataFrame(json.load(open(result_filename))) for sequence_length in SEQUENCE_LENGTHS: for data_filename in os.listdir(dataset_path): for split_id, split_method in [('data percentages', split_data_by_userdata_percentage),('month percentages', split_data_by_month_percentage)]: timespan_id = '1HR' threshold_id = 'WITH' if '15MIN' in data_filename: timespan_id = '15MIN' if 'WITHOUT' in data_filename: threshold_id = 'WITHOUT' if len(results) > 0: if len(results[(results[split_str]==split_id) & (results[timespan_str]==timespan_id) & (results[threshold_str]==threshold_id) & (results[sequence_length_str]==sequence_length)]) > 0: continue file_path = os.path.join(dataset_path, data_filename) df = load_dataset(file_path) df = remove_covid_data(df) tr,val,te = split_method(df, percentages=(80,10,10)) tr = reduce_columns(tr, data_filename) val = reduce_columns(val, data_filename) te = reduce_columns(te, data_filename) user_data_train = prepare_user_data(tr) user_data_val = prepare_user_data(val) best_models = train_models(user_data_train, user_data_val, sequence_lengths=[sequence_length]) results = pd.concat([results, evaluate_model_on_test_data(model=best_models[sequence_length]['model'], test_df=te, split_id=split_id, sequence_length=sequence_length, time_span_id=timespan_id, threshold_id=threshold_id)], ignore_index=True) results.to_json(result_filename) # === Evaluation === def evaluate_model_on_test_data(model, test_df,sequence_length, split_id, threshold_id, time_span_id): user_data = prepare_user_data(test_df) x, y = prepare_data_for_model(user_data=user_data, sequence_length=sequence_length) y_pred = model.predict(x, verbose=0) y_pred_classes = np.argmax(y_pred, axis=1) recall = sklearn.metrics.recall_score(y, y_pred_classes, average='weighted') precision = sklearn.metrics.precision_score(y, y_pred_classes, average='weighted') f1_score = sklearn.metrics.f1_score(y, y_pred_classes, average='weighted') return pd.DataFrame({split_str:[split_id], threshold_str:[threshold_id], timespan_str:[time_span_id], sequence_length_str:[sequence_length], recall_str:[recall], precision_str:[precision], f1_string:[f1_score]}) if __name__ == "__main__": main_two() print('Done')