import numpy as np import pandas as pd from pipeline import ( load_dataset, filter_data, filter_test_data, prepare_user_data, train_models, evaluate_models, display_warning_about_2020_data, display_warnings_for_scenarios ) year_str = 'Year' month_str = 'Month' user_str = 'user' # === Configurable Parameters === DATA_PATH = './Datasets/ALLUSERS32_15MIN_WITHOUTTHREHOLD.xlsx' OUTPUT_EXCEL_PATH = './working/evaluation_results.xlsx' SEQUENCE_LENGTHS = [20] # You can add more: [20, 25, 30] TRAINING_SCENARIO = [(2018, list(range(1, 13))), (2019, list(range(1, 10)))] VALIDATION_SCENARIO = [(2019, [10, 11, 12])] TEST_SCENARIO = [(2020, [1, 2])] # Jan–Feb 2020 only # === Optional display only === predefined_training_scenarios = { "Scenario 1": {"years_months": [(2018, list(range(1, 13))), (2019, list(range(1, 10)))]}, "Scenario 2": {"years_months": [(2017, list(range(1, 13))), (2018, list(range(1, 13))), (2019, list(range(1, 10)))]} } predefined_validation_scenarios = { "Scenario A": {"years_months": [(2019, [10, 11, 12])]} } def remove_covid_data(df): df = df[~((df[year_str]==2020) & (df[month_str]>2))] return df def split_data_by_month_percentage(df, percentages): train_p, valid_p, test_p = percentages ids = df[[year_str, month_str]].drop_duplicates().sort_values([year_str, month_str]) tr, va, te = np.split(ids, [int((train_p/100) * len(ids)), int(((train_p + valid_p)/100) * len(ids))]) return df.merge(tr, on=[year_str, month_str], how='inner'), df.merge(va, on=[year_str, month_str], how='inner'), df.merge(te, on=[year_str, month_str], how='inner') def split_data_by_userdata_percentage(df, percentages): train_p, valid_p, test_p = percentages tr, va, te = pd.DataFrame(), pd.DataFrame(), pd.DataFrame() for user_id in df[user_str].unique(): user_data = df[df[user_str]==user_id].sort_values([year_str, month_str]) u_tr, u_va, u_te = np.split(user_data, [int((train_p/100)*len(user_data)), int(((train_p+valid_p)/100)*len(user_data))]) tr = pd.concat([tr, u_tr], ignore_index=True) va = pd.concat([va, u_va], ignore_index=True) te = pd.concat([te, u_te], ignore_index=True) return tr, va, te def main(): # print("=== Training Scenario Setup ===") # display_warning_about_2020_data() # display_warnings_for_scenarios("training", predefined_training_scenarios, predefined_validation_scenarios) # print("\n=== Validation Scenario Setup ===") # display_warning_about_2020_data() # display_warnings_for_scenarios("validation", predefined_training_scenarios, predefined_validation_scenarios) # === Load and preprocess === df = load_dataset(DATA_PATH) removed = remove_covid_data(df) tr,val,te = split_data_by_userdata_percentage(df, (80,10,10)) tr_2, val_2, te_2 = split_data_by_month_percentage(df, (80, 10, 10)) ALLUSERS32_15MIN_WITHOUTTHREHOLD = False if('ALLUSERS32_15MIN_WITHOUTTHREHOLD.xlsx' in DATA_PATH): ALLUSERS32_15MIN_WITHOUTTHREHOLD = True training_data = filter_data(df, TRAINING_SCENARIO, ALLUSERS32_15MIN_WITHOUTTHREHOLD) validation_data = filter_data(df, VALIDATION_SCENARIO, ALLUSERS32_15MIN_WITHOUTTHREHOLD) user_data_train = prepare_user_data(training_data) user_data_val = prepare_user_data(validation_data) # === Train models === best_models = train_models(user_data_train, user_data_val, sequence_lengths=SEQUENCE_LENGTHS) # === Load and evaluate test === test_df = filter_test_data(df, TEST_SCENARIO) evaluate_models(best_models, test_df, SEQUENCE_LENGTHS, OUTPUT_EXCEL_PATH, ALLUSERS32_15MIN_WITHOUTTHREHOLD) print(f"\n✅ All evaluations completed. Results saved to: {OUTPUT_EXCEL_PATH}") if __name__ == "__main__": main()