You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

180 lines
6.3 KiB

import os
import pandas as pd
def process_single_file(file_path, user_label, interval='1H', threshold=None):
"""
Process a single step count CSV file into a pivoted daily activity DataFrame.
Parameters
----------
file_path : str
Path to the CSV file.
user_label : int
Unique label assigned to the user represented by this file.
interval : str, optional
Any valid pandas resampling interval (e.g., '1H', '15T', '30min', '5min').
threshold : float or None, optional
Minimum step count value to include in aggregation.
If None, all values are included (no filtering).
Returns
-------
pd.DataFrame
A DataFrame where each row represents one day of activity with
boolean indicators for each time interval, plus temporal and user info.
"""
# Load dataset with flexible column handling
df = pd.read_csv(file_path, delimiter=';')
# Ensure required columns exist
required_cols = {'device', 'startDate', 'value'}
if not required_cols.issubset(df.columns):
raise ValueError(f"Missing required columns in {file_path}: {required_cols - set(df.columns)}")
# Filter for iPhone devices (ignore NaN safely)
iphone_df = df[df['device'].str.contains('iPhone', na=False)].copy()
if iphone_df.empty:
return pd.DataFrame() # Skip empty or invalid files
# Convert startDate to datetime
iphone_df['startDate'] = pd.to_datetime(
iphone_df['startDate'], errors='coerce'
)
iphone_df.dropna(subset=['startDate'], inplace=True)
# Round down to the nearest interval dynamically
iphone_df['interval_start'] = iphone_df['startDate'].dt.floor(interval)
# Extract date and time components
iphone_df['date'] = iphone_df['interval_start'].dt.date
iphone_df['time'] = iphone_df['interval_start'].dt.time
# Apply threshold filtering if specified
if threshold is not None:
iphone_df = iphone_df[iphone_df['value'] > threshold]
# Group by date and time, summing step values within each interval
interval_sum = (
iphone_df.groupby(['date', 'time'])['value']
.sum()
.reset_index()
)
# Generate a full time range based on the chosen interval
full_time_range = pd.date_range('00:00', '23:59', freq=interval).time
# Pivot to make one row per date, columns as time intervals
pivot_table = interval_sum.pivot(
index='date', columns='time', values='value'
).fillna(0)
# Ensure all intervals exist even if missing in data
pivot_table = pivot_table.reindex(columns=full_time_range, fill_value=0)
# Rename columns for clarity
pivot_table.columns = [str(col) for col in pivot_table.columns]
# Reset index to make 'date' a column again
pivot_table.reset_index(inplace=True)
# Add temporal features
pivot_table['DayOfWeek'] = pd.to_datetime(pivot_table['date']).dt.day_name()
pivot_table['Month'] = pd.to_datetime(pivot_table['date']).dt.month
pivot_table['Year'] = pd.to_datetime(pivot_table['date']).dt.year
# One-hot encode day of week
pivot_table = pd.concat(
[pivot_table, pd.get_dummies(pivot_table['DayOfWeek'], prefix='DayOfWeek')],
axis=1
)
# Convert all time-interval columns to boolean (active or not)
for col in pivot_table.columns[1:1 + len(full_time_range)]:
pivot_table[col] = pivot_table[col].apply(lambda x: True if x > 0 else False)
# Add user identifier
pivot_table['user'] = user_label
# Drop original DayOfWeek (we have the one-hot encoded version)
pivot_table.drop(columns=['DayOfWeek'], inplace=True)
return pivot_table
def process_stepcount_files(input_folders, output_folder,
files_to_skip=None, interval='1H', threshold=None):
"""
Process multiple step count CSV files from given folders into one aggregated Excel dataset.
Parameters
----------
input_folders : list of str
List of folders to scan recursively for CSV files.
output_folder : str
Folder path where the combined Excel file will be saved.
files_to_skip : set or list of str, optional
Filenames to ignore during processing.
interval : str, optional
Any valid pandas resampling interval.
threshold : float or None, optional
Minimum value for step count inclusion. If None, all values are used.
Returns
-------
pd.DataFrame
Combined DataFrame containing all processed user data.
"""
# Ensure skip list is a set for fast lookup
files_to_skip = set(files_to_skip or [])
# Collect all CSV file paths
file_paths = []
for folder in input_folders:
for root, _, files in os.walk(folder):
for fname in files:
if fname.endswith('.csv') and fname not in files_to_skip:
file_paths.append(os.path.join(root, fname))
# Assign user labels
user_labels = list(range(len(file_paths)))
# Process each file
processed_dfs = []
for file_path, user_label in zip(file_paths, user_labels):
df = process_single_file(file_path, user_label, interval, threshold)
if not df.empty:
processed_dfs.append(df)
# Combine all processed data
if not processed_dfs:
raise ValueError("No valid data files found for processing.")
combined_df = pd.concat(processed_dfs, ignore_index=True)
# Create output filename dynamically
threshold_label = (
f"threshold{int(threshold)}" if threshold is not None else "nothreshold"
)
interval_label = interval.replace(' ', '').replace(':', '')
output_filename = f"combined_aggregated_data_{interval_label}_{threshold_label}.xlsx"
output_path = os.path.join(output_folder, output_filename)
# Save to Excel
os.makedirs(output_folder, exist_ok=True)
combined_df.to_excel(output_path, index=False)
return combined_df
# Example usage:
# combined_df = process_stepcount_files(
# input_folders=['/path/to/data/folder'],
# output_folder='/path/to/output/folder',
# files_to_skip={'StepCount06.csv', 'StepCount10.csv'},
# interval='30T', # Any valid pandas frequency, e.g. '5T', '10T', '2H', etc.
# threshold=25
# )
process_stepcount_files(["Step_Data_Project_India/Rest_of_the_World", "Step_Data_Project_India/Europe"], "Step_Data_Project_India/OuptutIndiaTest", interval="1H")