This repository contains our work towards an continuous OT-MP-PSI protocol.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 

323 lines
6.9 KiB

{
"cells": [
{
"cell_type": "markdown",
"id": "d172899c",
"metadata": {},
"source": [
"# Mahdavi et al.'s OT-MP-PSI Protocol\n",
"## An implementation in SageMath for research purposes\n",
"\n",
"We implement the OT-MP-PSI protocol of Mahdavi et al. It is based on Shamir's Secret Sharing and the homomorphic Paillier encryption scheme.\n",
"\n",
"### Mathematical Preamble\n"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "42670e84",
"metadata": {},
"outputs": [],
"source": [
"import hashlib\n",
"import random\n",
"\n",
"# Prime order of the finite field\n",
"q = 11\n",
"p = 2*q + 1 # 23 is prime!\n",
"# Threshold value\n",
"t = 4\n",
"# Number of participants (holders of a dataset)\n",
"m = 7\n",
"# Secret to reconstruct\n",
"S = 0\n",
"\n",
"Fp = GF(p)\n",
"R = PolynomialRing(Fp,\"x\")\n",
"\n",
"G = Integers(q)\n",
"\n",
"# Paillier Cryptosystem\n",
"p2 = 13\n",
"q2 = 17\n",
"assert(p2.is_prime())\n",
"assert(q2.is_prime())\n",
"N = p2 * q2\n",
"\n",
"alpha = 0\n",
"\n",
"#FN2 = FiniteField(N^2, 'g')\n",
"ZN2 = Zmod(N^2)\n",
"FN2 = [a for a in ZN2 if gcd(a,N^2) == 1]\n",
"\n",
"g = random.choice(FN2)"
]
},
{
"cell_type": "markdown",
"id": "8c2c98e4",
"metadata": {},
"source": [
"### Paillier Encryption"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "a264ea15",
"metadata": {},
"outputs": [],
"source": [
"def paillier_encrypt(element):\n",
" r = random.randint(0, N-1)\n",
" return pow(g, element) * pow(r, N)"
]
},
{
"cell_type": "markdown",
"id": "d76a9195",
"metadata": {},
"source": [
"### Initialize Shamir's Secret Sharing"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "695e93bf",
"metadata": {},
"outputs": [],
"source": [
"def sample_coefficients(t):\n",
" coefficients = []\n",
" coefficients.append(S)\n",
" for i in range(0, t-1):\n",
" coefficients.append(Fp.random_element())\n",
" print(coefficients)\n",
" return coefficients"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "7c2565c5",
"metadata": {},
"outputs": [],
"source": [
"# Construct Polynomial\n",
"def poly(coefficients):\n",
" return R(coefficients)"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "b61c1603",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[0, 6, 6, 0]\n"
]
},
{
"data": {
"text/plain": [
"5"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"f_x = poly(sample_coefficients(t))\n",
"f_x(4)"
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "4c8c5660",
"metadata": {},
"outputs": [],
"source": [
"def H(element):\n",
" h = hashlib.new('sha256')\n",
" h.update(bytes(element))\n",
" return int(h.hexdigest(), 16) % q"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "54e8a4bf",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"7"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"H(0b10011101)"
]
},
{
"cell_type": "code",
"execution_count": 39,
"id": "b9bada7f",
"metadata": {},
"outputs": [],
"source": [
"def keyholder_init():\n",
" coefficients = sample_coefficients(t)\n",
" \n",
"def participant_init(element):\n",
" global alpha \n",
" alpha = random.randint(1,p)\n",
" print(alpha)\n",
" return (pow(H(element), alpha), pow(g, alpha))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5d43f845",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 40,
"id": "fd75b745",
"metadata": {},
"outputs": [],
"source": [
"def keyholder_processing(part_init_res):\n",
" hash_element, g_power_alpha = part_init_res\n",
" print(hash_element)\n",
" random_numbers = []\n",
" for i in range(0, t-1):\n",
" random_numbers.append(Fp.random_element())\n",
" \n",
" return_values = []\n",
" print(random_numbers)\n",
" for j in range(0, t-1):\n",
" return_values.append(pow(g_power_alpha, random_numbers[j]) * pow(hash_element, coefficients[j+1]))\n",
" \n",
" return return_values"
]
},
{
"cell_type": "code",
"execution_count": 41,
"id": "8395e9bd",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[0, 8, 14, 12]\n",
"[0, 8, 14, 12]\n",
"3\n",
"3\n",
"(64, 16102)\n",
"64\n",
"[21, 21, 3]\n",
"3\n",
"64\n",
"[6, 9, 6]\n"
]
},
{
"data": {
"text/plain": [
"[5806, 32072, 38726]"
]
},
"execution_count": 41,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"coefficients = sample_coefficients(t)\n",
"print(coefficients)\n",
"res = participant_init(10)\n",
"print(alpha)\n",
"print(res)\n",
"keyholder_processing(res)\n",
"\n",
"def participant_2(keyholder_values):\n",
" intermediate_results = []\n",
" for i in keyholder_values:\n",
" intermediate_results.append(pow(i, alpha))\n",
" \n",
" # Paillier Encryption\n",
" encrypted_values = []\n",
" for i in intermediate_results:\n",
" encrypted_values.append(paillier_encrypt(i))\n",
" \n",
" return encrypted_values\n",
" \n",
" \n",
"participant_2(keyholder_processing(participant_init(10)))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6cc33c78",
"metadata": {},
"outputs": [],
"source": [
"def keyholder_2(encrypted_values):\n",
" intermediate_values = []\n",
" for i in encrypted_values:\n",
" intermediate_values.append(i * )"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "dcb3185e",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "SageMath 9.5",
"language": "sage",
"name": "sagemath"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}