Browse Source

Meine Versuche das Preprocessing in normale .py Dateien zu verwandeln. Funktioniert noch nicht.

master
Robert Rabbe 1 week ago
parent
commit
b9fb1128c7
  1. 459
      data_preprocessing.py
  2. 36
      data_preprocessing_main.py

459
data_preprocessing.py

@ -1,335 +1,180 @@
import os
import pandas as pd
def process_file_one_hour_no_threshold(file_path, user_label):
# Load the dataset
def process_single_file(file_path, user_label, interval='1H', threshold=None):
"""
Process a single step count CSV file into a pivoted daily activity DataFrame.
Parameters
----------
file_path : str
Path to the CSV file.
user_label : int
Unique label assigned to the user represented by this file.
interval : str, optional
Any valid pandas resampling interval (e.g., '1H', '15T', '30min', '5min').
threshold : float or None, optional
Minimum step count value to include in aggregation.
If None, all values are included (no filtering).
Returns
-------
pd.DataFrame
A DataFrame where each row represents one day of activity with
boolean indicators for each time interval, plus temporal and user info.
"""
# Load dataset with flexible column handling
df = pd.read_csv(file_path, delimiter=';')
# Step 1: Filter for iPhone devices
iphone_df = df[df['device'].str.contains('iPhone', na=False)] # Treat NaN as False
# Step 2: Select the desired columns
result = iphone_df[['startDate', 'endDate', 'value']]
# Step 3: Convert startDate to datetime
iphone_df['startDate'] = pd.to_datetime(iphone_df['startDate'], format='%Y-%m-%d %H:%M:%S %z')
# Step 4: Extract date and hour
iphone_df['date'] = iphone_df['startDate'].dt.date
iphone_df['hour'] = iphone_df['startDate'].dt.hour
# Ensure required columns exist
required_cols = {'device', 'startDate', 'value'}
if not required_cols.issubset(df.columns):
raise ValueError(f"Missing required columns in {file_path}: {required_cols - set(df.columns)}")
# Step 5: Group by date and hour, then sum the values
hourly_sum = iphone_df.groupby(['date', 'hour'])['value'].sum().reset_index()
# Step 6: Pivot the data to get one row per day with 24 columns for each hour
pivot_table = hourly_sum.pivot(index='date', columns='hour', values='value').fillna(0)
# Step 7: Rename columns to reflect hours
pivot_table.columns = [f'Hour_{i}' for i in pivot_table.columns]
# Step 8: Reset index to have 'date' as a column instead of index
pivot_table.reset_index(inplace=True)
# Step 9: Add day of the week, month, and year columns
pivot_table['DayOfWeek'] = pd.to_datetime(pivot_table['date']).dt.day_name()
pivot_table['Month'] = pd.to_datetime(pivot_table['date']).dt.month
pivot_table['Year'] = pd.to_datetime(pivot_table['date']).dt.year
# Step 10: One-hot encode the 'DayOfWeek' column
pivot_table = pd.concat([pivot_table, pd.get_dummies(pivot_table['DayOfWeek'], prefix='DayOfWeek')], axis=1)
# Step 11: Convert hourly values to binary (True if > 0, else False)
for col in pivot_table.columns[1:25]: # Skip the 'date' column and focus on hours
pivot_table[col] = pivot_table[col].apply(lambda x: True if x > 0 else False)
# Step 12: Add 'user' column with the specified user label
pivot_table['user'] = user_label
# Print which file is currently being processed
print(file_path,user_label)
# Step 13: Drop the 'DayOfWeek' column
pivot_table.drop(columns=['DayOfWeek'], inplace=True)
return pivot_table
# List of files to skip
files_to_skip = {'StepCount06.csv','StepCount10.csv','StepCount12.csv', 'StepCount13.csv', 'StepCount15.csv', 'StepCount17.csv',
'StepCount18.csv', 'StepCount20.csv', 'StepCount24.csv','StepCount27.csv', 'StepCount31.csv','StepCount32.csv',
'StepCount42.csv', 'StepCount46.csv'}
# Generate file paths, skipping specified files
file_paths = [f'/content/drive/My Drive/Data/iOS/StepCount{i:02d}.csv' for i in range(1, 47)
if f'StepCount{i:02d}.csv' not in files_to_skip]
# Generate user labels based on file index
user_labels = list(range(len(file_paths)))
# Process each file with its corresponding user label and concatenate the results
processed_dfs = [process_file(file_path, user_label) for file_path, user_label in zip(file_paths, user_labels)]
combined_df = pd.concat(processed_dfs, ignore_index=True)
# Save the combined DataFrame to a new Excel file
updated_file_path = '/content/combined_aggregated_data.xlsx'
combined_df.to_excel(updated_file_path, index=False)
# Print the final DataFrame
print(combined_df)
def process_file_15_min_no_threshold(file_path, user_label):
# Load the dataset
df = pd.read_csv(file_path, delimiter=';')
# Filter for iPhone devices
iphone_df = df[df['device'].str.contains('iPhone', na=False)]
# Filter for iPhone devices (ignore NaN safely)
iphone_df = df[df['device'].str.contains('iPhone', na=False)].copy()
if iphone_df.empty:
return pd.DataFrame() # Skip empty or invalid files
# Convert startDate to datetime
iphone_df['startDate'] = pd.to_datetime(iphone_df['startDate'], format='%Y-%m-%d %H:%M:%S %z')
# Round down the startDate to the nearest 15-minute interval
iphone_df['15min_interval'] = iphone_df['startDate'].dt.floor('15T')
# Extract date, time, year, and month for 15-minute intervals
iphone_df['date'] = iphone_df['15min_interval'].dt.date
iphone_df['time'] = iphone_df['15min_interval'].dt.time
iphone_df['Year'] = iphone_df['15min_interval'].dt.year
iphone_df['Month'] = iphone_df['15min_interval'].dt.month
# Group by date, time, year, and month, then sum the values
interval_sum = iphone_df.groupby(['date', 'time', 'Year', 'Month'])['value'].sum().reset_index()
# Create a full range of 15-minute intervals (00:00:00 to 23:45:00)
full_time_range = pd.date_range('00:00', '23:45', freq='15T').time
# Pivot the data to get one row per day with columns for each 15-minute interval
pivot_table = interval_sum.pivot(index=['date', 'Year', 'Month'], columns='time', values='value').fillna(0)
# Reindex to include all possible 15-minute intervals
iphone_df['startDate'] = pd.to_datetime(
iphone_df['startDate'], errors='coerce'
)
iphone_df.dropna(subset=['startDate'], inplace=True)
# Round down to the nearest interval dynamically
iphone_df['interval_start'] = iphone_df['startDate'].dt.floor(interval)
# Extract date and time components
iphone_df['date'] = iphone_df['interval_start'].dt.date
iphone_df['time'] = iphone_df['interval_start'].dt.time
# Apply threshold filtering if specified
if threshold is not None:
iphone_df = iphone_df[iphone_df['value'] > threshold]
# Group by date and time, summing step values within each interval
interval_sum = (
iphone_df.groupby(['date', 'time'])['value']
.sum()
.reset_index()
)
# Generate a full time range based on the chosen interval
full_time_range = pd.date_range('00:00', '23:59', freq=interval).time
# Pivot to make one row per date, columns as time intervals
pivot_table = interval_sum.pivot(
index='date', columns='time', values='value'
).fillna(0)
# Ensure all intervals exist even if missing in data
pivot_table = pivot_table.reindex(columns=full_time_range, fill_value=0)
# Rename columns to reflect 15-minute intervals
pivot_table.columns = [f'{str(col)}' for col in pivot_table.columns]
# Rename columns for clarity
pivot_table.columns = [str(col) for col in pivot_table.columns]
# Convert interval values to boolean (True if > 0, else False)
pivot_table = pivot_table.apply(lambda col: col != 0, axis=0)
# Reset index to have 'date', 'Year', and 'Month' as columns instead of index
# Reset index to make 'date' a column again
pivot_table.reset_index(inplace=True)
# Add day of the week
pivot_table['DayOfWeek'] = pd.to_datetime(pivot_table['date']).dt.day_name()
# One-hot encode the 'DayOfWeek' column
pivot_table = pd.concat([pivot_table, pd.get_dummies(pivot_table['DayOfWeek'], prefix='DayOfWeek')], axis=1)
# Add a user column with the specified user label
pivot_table['user'] = user_label
# Print which file is currently being processed
print(f"Processing file: {file_path}, User label: {user_label}")
return pivot_table
# List of files to skip
files_to_skip = {'StepCount06.csv','StepCount10.csv','StepCount12.csv', 'StepCount13.csv', 'StepCount15.csv', 'StepCount17.csv',
'StepCount18.csv', 'StepCount20.csv', 'StepCount24.csv', 'StepCount27.csv','StepCount31.csv','StepCount32.csv',
'StepCount42.csv', 'StepCount46.csv'}
# Generate file paths, skipping specified files
file_paths = [f'/content/drive/My Drive/Data/iOS/StepCount{i:02d}.csv' for i in range(1, 47)
if f'StepCount{i:02d}.csv' not in files_to_skip]
# Generate user labels based on file index
user_labels = list(range(len(file_paths)))
# Process each file with its corresponding user label and concatenate the results
processed_dfs = [process_file(file_path, user_label) for file_path, user_label in zip(file_paths, user_labels)]
combined_df = pd.concat(processed_dfs, ignore_index=True)
# Save the combined DataFrame to a new Excel file
updated_file_path = '/content/combined_aggregated_data_15min_without_threshold.xlsx'
combined_df.to_excel(updated_file_path, index=False)
# Print the final DataFrame
print(combined_df)
user_counts = combined_df['user'].value_counts()
# Display the count of each user
print(user_counts.sort_index())
def process_file_15_min_with_threshold(file_path, user_label):
# Load the dataset
df = pd.read_csv(file_path, delimiter=';')
# Step 1: Filter for iPhone devices
iphone_df = df[df['device'].str.contains('iPhone', na=False)] # Treat NaN as False
# Step 2: Select the desired columns
result = iphone_df[['startDate', 'endDate', 'value']]
# Step 3: Convert startDate to datetime
iphone_df['startDate'] = pd.to_datetime(iphone_df['startDate'], format='%Y-%m-%d %H:%M:%S %z')
# Step 4: Round down the startDate to the nearest 15-minute interval
iphone_df['15min_interval'] = iphone_df['startDate'].dt.floor('15T')
# Step 5: Extract date and time
iphone_df['date'] = iphone_df['15min_interval'].dt.date
iphone_df['time'] = iphone_df['15min_interval'].dt.time
# Step 6: Group by date and time, then sum the values for 15-minute intervals
iphone_df_filtered = iphone_df[iphone_df['value'] > 25].dropna(subset=['value'])
interval_sum = iphone_df.groupby(['date', 'time'])['value'].sum().reset_index()
# Step 7: Pivot the data to get one row per day with columns for each 15-minute interval
pivot_table = interval_sum.pivot(index='date', columns='time', values='value').fillna(0)
# Step 8: Create a full range of 15-minute intervals (00:00:00 to 23:45:00)
full_time_range = pd.date_range('00:00', '23:45', freq='15T').time
# Step 9: Reindex to include all possible 15-minute intervals and fill missing values with 0
pivot_table = pivot_table.reindex(columns=full_time_range, fill_value=0)
# Step 10: Rename columns to reflect 15-minute intervals
pivot_table.columns = [f'{str(col)}' for col in pivot_table.columns]
# Step 11: Reset index to have 'date' as a column instead of an index
pivot_table.reset_index(inplace=True)
# Step 12: Add day of the week, month, and year columns
pivot_table['DayOfWeek'] = pd.to_datetime(pivot_table['date']).dt.day_name()
pivot_table['Month'] = pd.to_datetime(pivot_table['date']).dt.month
pivot_table['Year'] = pd.to_datetime(pivot_table['date']).dt.year
# Step 13: One-hot encode the 'DayOfWeek' column
pivot_table = pd.concat([pivot_table, pd.get_dummies(pivot_table['DayOfWeek'], prefix='DayOfWeek')], axis=1)
# Step 14: Convert 15-minute interval values to binary (True if > 0, else False)
for col in pivot_table.columns[1:97]: # Skip the 'date' column and focus on 15-minute intervals
pivot_table[col] = pivot_table[col].apply(lambda x: True if x > 0 else False)
# Step 15: Add 'user' column with the specified user label
pivot_table['user'] = user_label
# Print which file is currently being processed
print(f"Processing file: {file_path}, User label: {user_label}")
# Step 16: Drop the 'DayOfWeek' column as it has been one-hot encoded
pivot_table.drop(columns=['DayOfWeek'], inplace=True)
return pivot_table
# List of files to skip
files_to_skip = {'StepCount06.csv','StepCount10.csv','StepCount12.csv', 'StepCount13.csv', 'StepCount15.csv', 'StepCount17.csv',
'StepCount18.csv', 'StepCount20.csv', 'StepCount24.csv', 'StepCount27.csv','StepCount31.csv','StepCount32.csv',
'StepCount42.csv', 'StepCount46.csv'}
# Generate file paths, skipping specified files
file_paths = [f'/content/drive/My Drive/Data/iOS/StepCount{i:02d}.csv' for i in range(1, 47)
if f'StepCount{i:02d}.csv' not in files_to_skip]
# Generate user labels based on file index
user_labels = list(range(len(file_paths)))
# Process each file with its corresponding user label and concatenate the results
processed_dfs = [process_file(file_path, user_label) for file_path, user_label in zip(file_paths, user_labels)]
combined_df = pd.concat(processed_dfs, ignore_index=True)
# Save the combined DataFrame to a new Excel file
updated_file_path = '/content/combined_aggregated_data_15min_with_threshold.xlsx'
combined_df.to_excel(updated_file_path, index=False)
# Print the final DataFrame
print(combined_df)
def process_file_1_hour_with_threshold(file_path, user_label):
# Load the dataset
df = pd.read_csv(file_path, delimiter=';')
# Step 1: Filter for iPhone devices
iphone_df = df[df['device'].str.contains('iPhone', na=False)] # Treat NaN as False
# Step 2: Select the desired columns
result = iphone_df[['startDate', 'endDate', 'value']]
# Step 3: Convert startDate to datetime
iphone_df['startDate'] = pd.to_datetime(iphone_df['startDate'], format='%Y-%m-%d %H:%M:%S %z')
# Step 4: Round down the startDate to the nearest 1-hour interval
iphone_df['1hr_interval'] = iphone_df['startDate'].dt.floor('H')
# Step 5: Extract date and time
iphone_df['date'] = iphone_df['1hr_interval'].dt.date
iphone_df['time'] = iphone_df['1hr_interval'].dt.time
# Step 6: Group by date and time, then sum the values for 1-hour intervals
iphone_df_filtered = iphone_df[iphone_df['value'] > 25].dropna(subset=['value'])
interval_sum = iphone_df.groupby(['date', 'time'])['value'].sum().reset_index()
# Step 7: Pivot the data to get one row per day with columns for each 1-hour interval
pivot_table = interval_sum.pivot(index='date', columns='time', values='value').fillna(0)
# Step 8: Create a full range of 1-hour intervals (00:00:00 to 23:00:00)
full_time_range = pd.date_range('00:00', '23:00', freq='H').time
# Step 9: Reindex to include all possible 1-hour intervals and fill missing values with 0
pivot_table = pivot_table.reindex(columns=full_time_range, fill_value=0)
# Step 10: Rename columns to reflect 1-hour intervals
pivot_table.columns = [f'{str(col)}' for col in pivot_table.columns]
# Step 11: Reset index to have 'date' as a column instead of an index
pivot_table.reset_index(inplace=True)
# Step 12: Add day of the week, month, and year columns
# Add temporal features
pivot_table['DayOfWeek'] = pd.to_datetime(pivot_table['date']).dt.day_name()
pivot_table['Month'] = pd.to_datetime(pivot_table['date']).dt.month
pivot_table['Year'] = pd.to_datetime(pivot_table['date']).dt.year
# Step 13: One-hot encode the 'DayOfWeek' column
pivot_table = pd.concat([pivot_table, pd.get_dummies(pivot_table['DayOfWeek'], prefix='DayOfWeek')], axis=1)
# One-hot encode day of week
pivot_table = pd.concat(
[pivot_table, pd.get_dummies(pivot_table['DayOfWeek'], prefix='DayOfWeek')],
axis=1
)
# Step 14: Convert 1-hour interval values to binary (True if > 0, else False)
for col in pivot_table.columns[1:25]: # Skip the 'date' column and focus on 1-hour intervals
# Convert all time-interval columns to boolean (active or not)
for col in pivot_table.columns[1:1 + len(full_time_range)]:
pivot_table[col] = pivot_table[col].apply(lambda x: True if x > 0 else False)
# Step 15: Add 'user' column with the specified user label
# Add user identifier
pivot_table['user'] = user_label
# Print which file is currently being processed
print(f"Processing file: {file_path}, User label: {user_label}")
# Step 16: Drop the 'DayOfWeek' column as it has been one-hot encoded
# Drop original DayOfWeek (we have the one-hot encoded version)
pivot_table.drop(columns=['DayOfWeek'], inplace=True)
return pivot_table
# List of files to skip
files_to_skip = {'StepCount06.csv','StepCount10.csv','StepCount12.csv', 'StepCount13.csv', 'StepCount15.csv', 'StepCount17.csv',
'StepCount18.csv', 'StepCount20.csv', 'StepCount24.csv', 'StepCount27.csv','StepCount31.csv','StepCount32.csv',
'StepCount42.csv', 'StepCount46.csv'}
# Generate file paths, skipping specified files
file_paths = [f'/content/drive/My Drive/Data/iOS/StepCount{i:02d}.csv' for i in range(1, 47)
if f'StepCount{i:02d}.csv' not in files_to_skip]
# Generate user labels based on file index
user_labels = list(range(len(file_paths)))
# Process each file with its corresponding user label and concatenate the results
processed_dfs = [process_file(file_path, user_label) for file_path, user_label in zip(file_paths, user_labels)]
combined_df = pd.concat(processed_dfs, ignore_index=True)
# Save the combined DataFrame to a new Excel file
updated_file_path = '/content/combined_aggregated_data_1hr_withthreshold.xlsx'
combined_df.to_excel(updated_file_path, index=False)
# Print the final DataFrame
print(combined_df)
def process_stepcount_files(input_folders, output_folder,
files_to_skip=None, interval='1H', threshold=None):
"""
Process multiple step count CSV files from given folders into one aggregated Excel dataset.
Parameters
----------
input_folders : list of str
List of folders to scan recursively for CSV files.
output_folder : str
Folder path where the combined Excel file will be saved.
files_to_skip : set or list of str, optional
Filenames to ignore during processing.
interval : str, optional
Any valid pandas resampling interval.
threshold : float or None, optional
Minimum value for step count inclusion. If None, all values are used.
Returns
-------
pd.DataFrame
Combined DataFrame containing all processed user data.
"""
# Ensure skip list is a set for fast lookup
files_to_skip = set(files_to_skip or [])
# Collect all CSV file paths
file_paths = []
for folder in input_folders:
for root, _, files in os.walk(folder):
for fname in files:
if fname.endswith('.csv') and fname not in files_to_skip:
file_paths.append(os.path.join(root, fname))
# Assign user labels
user_labels = list(range(len(file_paths)))
# Process each file
processed_dfs = []
for file_path, user_label in zip(file_paths, user_labels):
df = process_single_file(file_path, user_label, interval, threshold)
if not df.empty:
processed_dfs.append(df)
# Combine all processed data
if not processed_dfs:
raise ValueError("No valid data files found for processing.")
combined_df = pd.concat(processed_dfs, ignore_index=True)
# Create output filename dynamically
threshold_label = (
f"threshold{int(threshold)}" if threshold is not None else "nothreshold"
)
interval_label = interval.replace(' ', '').replace(':', '')
output_filename = f"combined_aggregated_data_{interval_label}_{threshold_label}.xlsx"
output_path = os.path.join(output_folder, output_filename)
# Save to Excel
os.makedirs(output_folder, exist_ok=True)
combined_df.to_excel(output_path, index=False)
return combined_df
# Example usage:
# combined_df = process_stepcount_files(
# input_folders=['/path/to/data/folder'],
# output_folder='/path/to/output/folder',
# files_to_skip={'StepCount06.csv', 'StepCount10.csv'},
# interval='30T', # Any valid pandas frequency, e.g. '5T', '10T', '2H', etc.
# threshold=25
# )
process_stepcount_files(["Step_Data_Project_India/Rest_of_the_World", "Step_Data_Project_India/Europe"], "Step_Data_Project_India/OuptutIndiaTest", interval="1H")

36
data_preprocessing_main.py

@ -0,0 +1,36 @@
import data_preprocessing
# Example usage:
# combined_df = process_stepcount_files(
# input_folders=[
# '/content/drive/My Drive/Data/iOS',
# '/content/drive/My Drive/Data/Watch'
# ],
# output_folder='/content/drive/My Drive/Data/Results',
# files_to_skip={
# 'StepCount06.csv', 'StepCount10.csv', 'StepCount12.csv',
# 'StepCount13.csv', 'StepCount15.csv', 'StepCount17.csv',
# 'StepCount18.csv', 'StepCount20.csv', 'StepCount24.csv',
# 'StepCount27.csv', 'StepCount31.csv', 'StepCount32.csv',
# 'StepCount42.csv', 'StepCount46.csv'
# },
# interval='15T', # or '1H'
# threshold=25 # or None
# )
input_folders=[
'Step_Data_Project_India/Europe/Europe',
'Step_Data_Project_India/Rest_of_the_World'
]
output_folder='Step_Data_Project_India/Preprocessing_Results'
files_to_skip={
'StepCount06.csv', 'StepCount10.csv', 'StepCount12.csv',
'StepCount13.csv', 'StepCount15.csv', 'StepCount17.csv',
'StepCount18.csv', 'StepCount20.csv', 'StepCount24.csv',
'StepCount27.csv', 'StepCount31.csv', 'StepCount32.csv',
'StepCount42.csv', 'StepCount46.csv'
}
interval='15T'
threshold=25
combined_df = data_preprocessing.process_stepcount_files(input_folders, output_folder, files_to_skip, interval, threshold)
Loading…
Cancel
Save